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INVERSE PROBLEMS OF DEFORMATION
OF NONLINEAR VISCOELASTIC BODIES

I. Yu. Tsvelodub UDC 539.37

We consider two classes of inverse problems of finding, in a given time interval [0,1.], external force
and kinematic actions which ensure, for ¢ = t., the required residual displacements of the surface points of
a physically nonlinear viscoelastic body under zero external loads at this moment. The correctness of the
corresponding formulations is shown, iteration methods of solution are substantiated, and the convergence
rate of successive approximations to an exact solution is estimated. In addition, the level of residual stresses
in a body at moment ¢ = t, and the change in the level of residual displacements of the body for ¢t > ¢, in
the absence of external forces owing to residual-stress relaxation are estimated.

1. Formulation of Inverse Problems. Let a uniformly heated body occupy the region V with the
boundary S subject to the necessary smoothness condition [1]. Equations which determine the process of its
deformation are of the form

EEl = GklmnOmn + €%, (L.1)

where €y, €f;, and o are the components of the full- and viscous-strain and stress tensors, respectively;
@kimn are the elastic-compliance tensor components possessing the known properties of symmetry and positive
definiteness [1}, i.e.,

GklmnOkiTmn 2 GOkIOkI, a>0. (1.2)

Here and below, the usual rule of summation over repeat subscripts is adopted; k, [ = 1, 2, and 3. The strains

€k are small and are expressed via the components of the displacement vector u; by the following Cauchy
" relations:

ert = (1/2)(upg + uip) (L.3)

(the subscript after the comma refers to the derivative with respect to the corresponding coordinate).
The components of the viscous-strain rates £§; = ny; are continuous stress functions:

Mkt = Nki(Omn)- (1.4)

Relations (1.1) and (1.4) describe fairly satisfactorily the isothermal process of creep of
nonstrengthening materials which have no first stage of creep. Among them, there are, for example, metallic
materials at low levels of stress (i.e., in fairly prolonged deformation processes) and in short-time creep under
conditions of high temperature and high levels of stress [2].

We assume that the functions (1.4) are subject to the following condition which generalizes the stability
postulate [3]:

AN Aok 2 Arimn A0k ACTn, X = const, A>0 (15)
1.5
(Aow=0l) o, Am=nu(el)) - @)

One can easily see that, by virtue of (1.2) and (1.5), relations (1.4) are reversible, i.e., the stresses
0k = Oki(Nmn) are uniquely determined by the known velocity components 7. [Indeed, for Ang; = 0, from
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(1.2) and (1.5) it follows that AogAcg < 0. This is possible only for Aoy = 0.] These functions arc assumed
to be subject to the following condition, which is similar to (1.5):

AnkiAokr 2 Aibimn ANk ANma, A1 = const, A1 > 0. (1.6)

Here byjnn are the components of the elastic-modulus tensor which is inverse to akimn, s0 that

Akimnbktij = 6imdjn, (1.7)

where 6 are the unit-tensor components.

Note that dependences (1.4) can be generalized by introducing the time t into the right-hand side:
&1 = Mei(Tmn, t). This corresponds to the so-called aging theories [2], which, despite the known shortcomings,
describe well the creep process under constant or slowly varying stresses. In this case, in formulas (1.5) and
(1.6), there should be A = A(t) > 0 and A, = A(t) > 0, respectively. Moreover, in the interval [0,t.], we shall

assume hereinafter that these functions are constant, and, to this end, it suffices to set A = min A(t) and
Al = in Ay(t).
1= min 1(t)

For the most general dependences of the form of (1.4), the necessary and sufficient conditions for
satisfaction of inequalities (1.5) and (1.6) in isotropic media can be obtained using the results of {3, Chapter
3] and taking into account the fact that (1.5) and (1.6) are equivalent, respectively, to the conditions that the
quadratic forms are not negative:
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- /\aklmn)fklgmm 67]
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As an illustration, for anisotropic media, we give the following potential dependences: g = 0®/0oy =
qa.:/aak,, & = &(s), n(s) = ¥(s), and s? = apmnTkITmn for which (1.5) and (1.6) hold if [4] A < (n/s,7') €
AT

The known functions n = Blexp(As/B) — 1], n = Bsinh(As/B), and n = Bs/(B/\ — s) satisfy, for
example, the latter inequalities (B = const) if one sets A1 = 5/(s,), where s, is the largest possible value of
s, for example, s, = oy (oy is the yield point, because plastic strains are absent), i.e., s < oy.

The inverse problem of deforming a body in a natural state for ¢ < 0 into a given residual state can
be formulated as follows: which external actions should be exerted on the surface S (in the absence of mass
forces) within the interval [0,¢.] in order that at the moment ¢t = ¢, the external forces are absent and the
residual displacements @; of the surface points S take on the given values of g, 7

We shall separate concrete classes of external force and kinematic actions when the loads or the
displacements over the surface S vary, in the interval [0,%o], by a given-in-time law but with the unknown
values for ¢ = tg. Within the interval [to, t.], the external forces are then lifted, i.e., a slow unloading occurs,
so that, for t = t,, the residual displacements are @; = iz, on the surface S. Hence, we shall consider the
following problems.

Problem 1. Find the quantities pxo such that under external loads py = f(t)pro applied to the surface
S, where f(t) is a given nonnegative function [f(0) = 0, f(0) > 0, f(t) >0 (0 <t < to), f(to) =1, f(t) <0
(to < t < ti), and f(t.) = 0], the following condition is satisfied: for t = t., the residual displacements are
U = g, on S.

Problem 2. Find the quantities ugg such that upon displacements ug = @(t)ugo (0 < t < to) on S and
under subsequent unloading when the external loads are pr = f(t)pry (to <t < t.), the following condition
is satisfied: the residual stresses g = i, on S for t = t.. Here ¢(t) and f(t) are given functions [¢(0) = 0,
o(te) = f(to) =1, f(t) <0 (to <t < ty), and f(t.) =0].

In both problems, we assume that, for ¢t < 0, the body was in a nondeformed state, and, hence,
according to (1.1) and (1.4), for viscous strains €f;, everywhere in V we have

£} =0. 1.8
Ml (1.8)
The above problems are considered within the framework of a conventional quasi-static formulation,

which is generally adopted in the creep theory for metallic materials [2-4] when dynamic terms are not
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incorporated in equilibrium equations. In this case, the mass forces are assumed to be absent and, hence, the
aforementioned equations have the form (4]

o = 0. (1.9)

Thus, the system of equations for both problems includes the constitutive equations (1.1) and (1.1).
the Cauchy equations (1.3), and the equilibrium equation (1.9). The initial conditions are of the form of
(1.8), and the desired boundary conditions are present in the formulations of Problems | and 2. Note that fo
to = t., the latter coincide with problems 1 and 2 from [4] and correspond to the case of instantaneous elastic
unloading at moment t = ¢,.

2. Auxiliary Assumptions. We denote the current residual displacements by %; which would remain
in the region V' at moment ¢ considered after instantaneous removal of the current external loads py on S

and also after elastic unloading. According to (1.3), to these displacements correspond the residual strains
£ry; moreover,

€kl = QkimnPmn + 5211 (2.1)
where py; are the residual stresses which appear in the body at moment ¢ after unloading. Here (3, 4]
Okl = Ok + Pii- (2:2)

In the above relation, of; are the components of the stresses corresponding to the solution of a purely elastic
problem with the same loads px on S at the same moment ¢, so that to the stresses pi; correspond to zero
loads on S.

We shall introduce the notation for the quantities which are often used in our consideration:

1/2 1
L (akl aklmnaklo'mndv ’ IZ(ekl) = _bklmnsklemndv
2 A 2

o) = ( [ Bena)”, 1= ( [ dt) o (frawra)”, o0 - [ P
0 0 0 0

t

at)= [fd,  B(t)=exp(-M) / [Glexp (M) dt,  fo = Blta),
0

0

1/2
» I3(t) / AngAoydV,

Y= AL = Algi(te) - (8 — 10)Pg(t) — g(t)]VZ, 2 = AT fhaglta),

to te
c3 = 1= o = [(t. = to)(ca = Nes)|'?, ca=AT(cs +cs), 5= /52 dt, = 53/1'2 dt,
0 t

2\ to)

c10 = M7y — D){es + es){1 = Bo = A(te = t0)*((7* = 1)es +7cs] /2) 72

Let &f; be the stress field and &}; = ajimadf; be the field of strains corresponding to the solution of
the elastic problem under displacements uj given on S. As is known [1], the quantity ||u|| = [,(5§,;) = I2(&%;)
can serve as a norm for the displacement field if one excludes from the latter the displacement of a body as a
rigid whole. In other words, the quantity |lu|| is the norm for the field w = u — ITu, where II is the operator
of the orthogonal projection [relative to the scalar product in (L%(V))3] onto a set of rigid displacements. In
what follows, by u we mean a set of displacements with subtraction of body displacement as a rigid whole,
i.e., the field w. If the point is, therefore, the uniqueness of solution of the corresponding problem in terms
of displacements (Problem 2), by this we assume the uniqueness of determination of the field w. The norm

to a2
cr = /5dt, I [ (l(t ——) - - 1)08],
0
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indicated above is produced by the following scalar product:

(a0 = [ L a5 8V = [ e av.
1% Vv

Note that to the stresses of; from (2.2) correspond the elastic displacements uf (solution of the elastic
problem under external loads p; specified on S), so that ||u®|| = I1(of;) = l2(e%;) , where €§; = agimnoS,,

Let the components of the displacement vector ux € Hl/Z(S) be given on S (the spaces used hereinafter
are defined in [1]). A solution of the corresponding elastic problem then exists in the region V. Note that
ux € H'(V). In this case, we obtain the following distribution of external loads on S: px € H~'/2(S). [And
vice versa, if pr € H~1/2(S) are specified on S, there exists the solution uy € H'(V) of the elastic problem.]
We can set the norm [lu|| = [1(d§;) = [2(¢};) into correspondence to each displacement vector u on S. As
is known from (1], under the adopted assumption that rigid displacement are absent the norm [lul| 41y, is
equivalent to [Jul|. Duvaut and Lions [1] established the inequality fjul| 2 Aflw|| 41y, where A > 0;

“W"ip(v) = ‘[(wkwk + wg wg,1) dV.

Owing to the positive definiteness of the matrix corresponding to the elastic-modulus tensor bgimn, one can
readily show that the inverse inequality [lu]| < Aif|wllg1(y), A1 > 0 also holds. In this connection, the

quantities uy € H/2(S) can be treated as the elements of the Hilbert space U with the norm |Ju||. Similarly.
the norm for the vector of external loads p on S is introduced: ||p|| = i(of;) = l2(ef;) = |[Ju®l, i.e., the
quantities pp € H~'/2(S) can be regarded as the elements of the Hilbert space P with the above norm. Note
that similar norms were used by Kuz’menko [5].

In our further consideration, we shall employ the equation of virtual work which, in the absence of
mass forces, has the form (3]

/O'HEH dV = /pkuk ds, (2.3)
v S
where the field oy satisfies the equilibrium equations (1.9), pr = oxn; (nr are the components of the unit
vector of the normal which is external to S), and the fields eg; and uy satisfy relations (1.3); here the quantities
ok and g are not related to each other.

By virtue of (2.3), we have

1
(o) =& [l a5 = L [P as
S

[3V]

Here ﬁg) € H~Y/2(S) are the external loads corresponding to the solution of the elastic problem in terms
of displacements ug) € HY%(S), i.e., ﬁg) = é'zg')nl on S (: = 1 and 2). On the other hand, for arbitrary
pil) € HY?(S) and ug) € HY%(S), we have

1
5 [ w5l dS = (ua, u),
s

where uf is the vector of elastic displacements over S, which corresponds to the vector of external loads p;.
To denote the increments of the corresponding quantities, we use the symbol A, as in Sec. 1. Note
that, from (2.2) and (2.3), it follows that

L(Aow) = [}(Acg) + I(Apw) = |[A|? + [}(Apw) 2 ||Au®|?, (2.4)

since {3]
[ kima Bt Bpridv = o0. (2.5)
14
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By virtue of (1.5). (1.6), and (2.4), we write
I3 > 20 (Aoyy) = 2A||Aut|?; (2.
Iy 2 20 13 (Anw). (
We then obtain estimates for [4(¢) through [|Au®||. From (2.1) and (2.3), it follows that

/ AdpDprdS = / AéyAoydV = / AéyAat, dV.
S 14 |4

(S
fep]

o
~1

With allowance for (2.1), (2.2), and (2.5), the last equality takes the form

[ akimnpmaBondV + I = [ Anussofyav.
14 14

Integrating over time from zero to the instant ¢ and taking into account that Apy = 0 for ¢t = 0 everywhere
in V, from the above inequality we find that

¢ t t
/ I3 dt = / / AnulAcfydVdt - I (Dpy(t)) < / / Uhtmn A0S (biii Any) dV dt
0 oV oV

¢ /2 , ¢ 1/2
< 2( / (Ao dt) ( / If(bk,m,.Anm,.)dt) = 205(8) La(t), (2.8)
0 0

where equalities (1.7) and the known inequality
t

¢ ) /2, ¢ \ 1/2
/ / akimnTkiYma dVdt < ( / 11(1‘k1)dt) ( / I (ykz)dt)
oV 0

0

were used for ry = Aoy and yx = bimaAfmn-
On the other hand, from (2.6) and (2.7) we have

t

t
/ Izdt > 2AIX(t), / Ldt > 2MI2(2),
0 0

from which, with allowance for (2.8), we obtain
Ms(t) < Ia(t) < A7 Is(2). (2.9)

In addition, in our further considerations we shall need to estimate the increments of the residual
displacements over 5, i.e., the quantity ||Aii|| through |[Au®||. We shall use Ag§; and Apy = Ad§n; to denote
the elastic stresses and the related external loads which correspond to the displacements At over S. Similarly
to (2.8), with allowance for (2.1) and (2.3) we then write

L 1AGP) = [ apmnAES AGE AV = [ AbcAF:dS
dt J ]

= [(GkimaBimn + Ana) ATV = [ AnudshidV < 2B(Anw)]Ail,
v |4

from which follows the inequality ||AQ| < [2(Ang). Integrating this inequality over time from zero to ¢ and
taking into account that |Aql] = 0 for t =0, we find

t
AG| < /Iz(Ank,)dt < ViL(t) < ATWs(t), (2.10)
0

where the Cauchy-Bunyakovskii inequality and (2.9) were used.



3. Correctness of Inverse Problems. The study of the correctness of Problems 1 and 2 will be based
on inequalities (2.6), (2.7), (2.9), and (2.10) and also on the lower estimate for the quantities (Au,, Aug) and
(Au,, Aug), respectively (the subscripts asterisk and zero refer to the moments of time ¢t = ¢, and ¢ = {g).

Lemma 1. Let there be two sets of loads Pk = f(t ) (i = 1 and 2) which act on S, where the
function f(t) is subject to the conditions indicated in the statement of Problem 1. The inequality

Ay, Aug) = crljAug? (3.1)
0 0

then holds for the differences of the corresponding quantities.
Proof. Owing to (2.1)-(2.3), with allowance for the equalities Aukl = 0 we have

(A, Auf) / / Adiy Apgo dSdt = / / Mdet + / / AdipApro dSdt = Is + I,
oS

15 =f U dou) + )

Let us estimate the quantities I¢ and I7 from (3.2). For g, after integration by parts of the first term under
the integral with allowance for the equalities

B _ BApu(t) . [T Apu())
fto) = 1, }5’3‘1‘7@)_“}5% If(t) -

[since f(0) > 0 and APHL=0 = 0], we obtain

tw tu
dt, Ir =//(ak1mnA[7mn + Anw)Acgy dVdt =//A77HA07;:0 dVdt.
oV toV

to
Is = F(Bpwo) + [1(F/5) 1 (Bput) + B(0)/f]dt > g1 (to)l| Aug%. (3:3)
0

Here the inequality holds true, because f > 0 (0 < t < to) and also by virtue of (2.6), where [|Au®|| = f]|Aug|.
Similarly to (2.8), for I7, recalling (2.9) we write

ta 1/2 te 1/2
i <2 [ Blamade) ([ laug)? )
to to

= 2t — to) /2| Auf|| [13(t.) — I3(t)]'/? < 2(ts — to) /3] Aug||2 AT 2g(ts) — Ag(to)]/>. (3.4)

From (3.2)-(3.4), it follows (3.1).

Theorem 1. Let G, € U and the function f = f(t) be such that the constant ¢ from (3.1) is positive.
Then there exists a unique solution pg € P of Problem 1, the operator pg = po(ti.) being continuous.

Proof. By virtue of Lemma 1, we have ¢;||Au§||? < (Ad., Au§) < ||Ad.|| ||Augl] from which follows
lAu§|l < c7Y||Ad.||, thus ensuring the uniqueness and continuity of the solution.

The proof of its existence is similar to that by the author [4] for Problem 1 and is as follows. Let us
consider the sequence {ul;} where

ul M =ul) —g(@} —a.)on S (n=0,1,2,...), € = const; (3.5)

u!, is an arbitrary element from U. From (2.10), we obtain that ||@?]| < c2ljul]], i-e., ¢ € U. Clearly, for
any n, the elements of the sequence (3.5) belongs to the space U.

From (3.5), we find that u*! — u?f! = uT — u®) — e(@™ — @) from which, with allowance for (2.10)
and (3.1), we have

m+1 __ n+l”2

[lugo = [luf — ufll® - 2e(uff — ugo, &7 — a7) + *[lal — Al < &fjlulh — udl®,

62 =1 —2ec; + 2.
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It is evident that for & < 1, 1e, for 0 < & < 2clc._;"’, the sequence (3.5) is fundamental. The maximum
convergence rate corresponds to the value ¢ = clcn_,_2 when 62 =1 — cfcz‘z. Since the space U is full, there
exists nli—ono]o u?, = ue € U. Here, according to (3.5), Jim af = .. As noted in Sec. 2, the element uey € U
determines uniquely the element po € P.

The iterative process (3.5) can serve as a basis for construction of approximate solutions of the problem
in question. Since |[uf! — u%|| < &iljuly — u” Yl (61 < 1), it is easy to show [4] that the convergence rate
of successive approximations to an exact solution is determined by the inequality ||ufy — ueo|| < 67(1 —
61) luly — uSlL

The above proof that Problem 1 is correct is essentially based on the condition ¢; > 0 which imposes
definite restrictions on the function f = f(t). To clarify these restrictions, with allowance for relation (3.1)
one can write the inequality ¢; > 0 as follows:

gilto) > (ts —to)[V’g(ts) = g(to)l,  v=A"IAT' 21 (3.6)

[the inequality v > 1 follows from (2.9); evidently, the case ¥ = 1 corresponds to the linear dependences (1.4)
when ng; = AagimnOmn and, hence, og; = A\ bgimnNma, where A; = A~1; here the equality sign holds in (1.5}
and (1.6)].
Since, owing to the Cauchy-Bunyakovskii inequality, g2(to) < tog(te), we have the following necessary
condition for satisfaction of (3.6): go/g« > 7%(1 — to/t«). This is possible only for
to/te > 1 —7472, (3.7)

so that go < g.. Inequality (3.7) establishes the lower bound for the moment when unloading begins.
We shall give an example of the function f = f(t) for which the basic condition (3.6) is satisfied. Let

A (t/te)™ (0<t<ty, 0<ar £1),
| (= )/t —to)]*2 (to <t < ta, a2 >0).
Condition (3.6) is then equivalent to the inequality to/t. > (1 + )71, where
2
_ = 2 _ _ (v* = 1)(22 + 1)]
13 a(\/l + &~ 2(a1 + 1) 1) [a 2o+ 1] I
2

Naturally, this increases the lower bound for o as compared with (3.7), because (1 +¢)™! > 1 — 472
We shall consider Problem 2.
Lemma 2. Let two sets of external actions be given on S :

) = p(tyul) (0<t<te), P =fO)h) (o<t<t) (i=1,2),
where the functions p(t) and f(t) are subject to the conditions formulated in Problem 2. The estimate
(Aik,, Aug) 2 c3)|Augl|? (3.8)
is then true.
Proof. Since u = 0 + u®,
-
(Adis, Aug) = (Aug — Au, Aug) + / (A, Au) dt. (3.9)
to

Let us estimate both terms on the right-hand side of equality (3.9). At any moment ¢t (0 <t < ¢g), owing to
(1.1) and (1.7) and also to the equality

1 ) .
§/aklmnAUmnAUkl dV = [i{(Aor) [1(Aok)
v
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we have

(Ao [ (Aow) + 2[3 = ‘2-/ AégyAog dV
Vv

1 . .
= 5 [ SkimaBomalbriis065) AV < [(Aow) o Aé).
v

Hence, taking into account (2.6) and the equality I2(Aéy) = ||Au|| = |¢]]|Aug|, we obtain il(Aokl) +
A1(Aok) < [6] Aol or d/de[11(Acw) exp ()] < [ Auol| [¢]exp(At)
Integrating this inequality over time from zero to the instant ¢ and taking into consideration that

Aakllt:o =0, we find that I} (Aocy) < B(t) |Aug||. From (2.4), it then follows that

Au® ()] < B(2) [|Auol| (0 <t < to). (3.10)
In particular, ||Augl] < Bo||Aug||, therefore (Aug — Auf§, Aug) > ||Augl? — ||Aug|| [|Aue]] > (1 —
Bo)l| Aug>.
Similarly to the quantity /7 from (3.2), for the integral in (3.9), with allowance for (3.10) we write

i/ (Ad, Aug) dtl (/12 Anx) dt) (/||Auo||2dt>

< Auofl(ts — to) /2 A2 I (t) - f\zlsz(to)] < [[Auo||(ts — to)/3(cs — A2es)'/2,

since [|Au®(t)|| = f(t)]]Au§|l (to <t < t.). From these inequalities and (3.9) follows (3.8).

Theorem 2. Let i, € U and the functions ¢ = ¢(t) and f = f(t) be such that the constant c3 from
(3.8) is positive. Then there exists a unique solution ug € U of Problem 2, the operator ug = ug(li«) being
continuous.

Proof. The uniqueness and continuity of the solution are ensured by an inequality which follows from

Lemma 2: ||Aug|| < ¢3||Aii.||. To prove its existence, note that, from (2.10) and (3.10), it is not difficult to
obtain

16| < Ve [Aul. (3.11)
Let us consider the sequence {uf}, which is similar to (3.5):
Wl =ul —¢(@?—d,)on S (n=0,1,2,...), €=const (3.12)
(ud is an arbitrary element from U). With allowance for (3.8) and (3.11), we therefore have
lult! — ud | < &2l|ul —udll, 6% =1 - 2cs+ eleats.

Hence, for 0 < € < 2c3/(cats), the sequence (3.12) is fundamental and, owing to the fullness of the
space U, converges to the element ug € U; here nlLIgo aj = d,.

The iterative process (3.12) can be used to find approximate solutions of the problem considered; here
lug — uoll < &3(1 —62)7 lug —ugl| (62 < 1).
Let us consider limitations which are imposed on the functions ¢ = ¢(t) and f = f(t) by the condition

c3 > 0. From this condition, it follows that 8 < 1, which is the case, for example, if $(t) > 0. Indeed, in this
case

0 0
Bo = exp(—)\to)/cpexp (AM)dt=1— /\exp(—-)\to)/tpexp (At)dt < 1,
0 0

because p(0) = 0, ¢(to) = 1, and 0 < p(t) < 1 (0 < t < tg). Therefore, it follows, in particular, that the
minimum value of By corresponds to a relaxation regime of deformation in the interval [0, ¢9] when ¢(0) = 0,
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A >0 (0<t<ty), o) =1 (& £t ty) for ¢ — 0. It is easy to see that Symin = exp(—Aly); 1.c., in
this case

tg
/Ic,&]exp(/\t)dt =1
0
while, for any other regime,
to to to
[ielexerdt > [lplde > [ode=1.
0 0 0
With allowance for (3.8), the inequality c3 > 0 can be represented as
A2(t, — to

te
/fzdt<7‘2 52[—(—1—_—@2—)—(72—1)%]. (3.13)
to

Assuming hereinafter that ¢ > 0, we obtain the lower and upper estimates for the constant ¢s from
(3.13). Owing to the Cauchy-Bunyakovskii inequality, we have c5 > c%to_1 and

e =/t9exp (—At)(]¢exp (M) dt) dt = -\ [exp (—/\t)/tc,b exp (At) dt — W)] ;°= A1 = By).
0 0 0

Here the procedure of integration by parts was used. Using this procedure, we also can show that

B-e2|° 7 (1 - o)’
- — Bo
=T P LV =
cs o) : +0/<Pﬂdt\ 5y~ e =cs
Thus, we have )
(1= Bo)?/(X*t0) < ¢5 < cs. (3.14)

From the first inequality in (3.14), we obtain a condition which is necessary to satisfy (3.13): (¢t. —
to)™! — (% = 1)ty 1 > 0. This condition is equivalent to inequality (3.7) and yields the same lower bound for
the moment ¢y of onset of unloading as in Problem 1.

The sufficient condition for satisfaction of (3.13) follows from the second inequality in (3.14):

tw
/ﬂﬁ<@. (3.15)
to

Inequality (3.15) is possible if cg > 0, i.e., for 2(1 — Bo)/[(¥% = 1)(1 + Bo)] > A(ts — to)-

With the function ¢ = ¢(t) specified in the active-loading interval, i.e., for 0 < ¢ < to, the conditions
(3.13) and (3.15) can be regarded as restrictions on the function f = f(¢) under unloading (o < ¢ < t.).
Hence, if f(t) = [(t. — t)/(ts — t0)]* (fo <t < t.), inequality (3.15) is satisfied for a > [c5 !(ts — to) — 1]/2.

4. Estimates of the Level of Residual Stresses for ¢ = t,. The inequalities which were used in
proving Theorems 1 and 2 allow one to obtain, for each problem considered, the upper estimates for the level
of residual stresses in the body at moment ¢ = ¢, after unloading. As a measure that characterizes this level,
we choose the quantity

te
1
I = 5 Iow) + ) [ Rlou(v) dt.
0

It should be noted that the formulas that we derived above for the differences of the quantities that
characterize two states are also valid for the quantities of the basic state, because this state can be chosen as
the first state, while the natural state corresponding to zeroth displacements, strains, and stresses throughout
the region V can be used as the second state.
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We introduce the following notation:
te

te 2
19 =/”ue“2 dt‘ 110 = (/ Ig(ﬂkl)dt) .
0 0
Then, from (2.3), with allowance for (2.4), (2.6), and (2.9), similarly to (3.2) we obtain
ta

Is + Mo < /uu dt—-—//nkzark,dth <11 < ATV,
0

from which

Is < (AT =\ s, (4.1)
Since [ju®]| = f]ju§]| and [Ju§|| < c7'||[i.]| in Problem 1, from (4.1) it follows that
I <O = NerZan . (12)

Because f(t) > 0 (0 < ¢ < t.), one can see from (3.1) that ¢; < Agi(t4), the equality sign occurring
only for tg = t,. In view of this, from (4.2) it follows that the minimum estimate for /g is obtained in the case

where the functional
A2g(t.)/gF(t) = A~ /fzdt/(/fdt)

reaches a minimum value in the set of functions f = f(t) subject to the conditions formulated in Problem 1.
Since g3(t.) < t.g(t.), the equality sign being possible only for f(t) = const on [0,¢,], this minimum is equal
to A~2t;! and corresponds to a stress at which the function f = f(t) [0,¢1] (1 — 0) increases monotonically
(instantaneously) from 0 to 1, then f(t) =1 for ¢; < ¢ < tp, and decreases monotonically from 1 to 0 in the
interval [tg,ts] (to — t.) (i-e., an instantaneous unloading occurs at ¢ = ¢,). In this case, from (4.2) we obtain
Is < (v — DA a2 '

In Problem 2, we ha.ve ()|l < B(t)||uo]| for 0 <t < o owing to (3. 10) and ||uc(t)|| = f()||u§| for
tg < t < t, and |Jug|| < c3![li4|- Hence, from (4.1) we ﬁnd Is < (A7 = M) A3cr2eq|iaL])? from which, with
allowance for (3.8) and (3.14), we obtain a cs-independent estimate:

Is < clOllﬁtllz- (4.3)

If the moment ¢ = ¢9 at which unloading begins is fixed, as is seen from (4.3), to minimize the estimate
obtained, it is necessary to set f(t) = 0 with tp <t < ¢4, i.e., ¢ = 0. This corresponds to an instantaneous
unloading at ¢t = t¢ and to the period during which the surface S of the body in question is in an unloaded
state in the interval (¢g,t.). For ¢g = 0, the function c10 = c10(fo) from (4.3) is an increasing one (for ¢z > 0,
which was used in Sec. 3), therefore mincip = ¢10(fomin)- As mentioned above, Bomin = exp (—Ato), which
corresponds to a relaxation regime of deformation in the interval [0, to].

If the magnitude of tp is not fixed, as it is easy to see, a minimum of the estimate (4.3) is reached for
to = t. and By = B. = exp(—At.), which corresponds to the aforementioned relaxation regime for 0 <t < ¢,
and to an instantaneous unloading for ¢ = ¢,. In this case, mincjo = (1/2)(y — 1)(1 + B.)(1 — B,)~!

5. Estimation of the Level of Residual Displacements for t > t,. We assume that after unloading
the body surface is in an unloaded state, i.e., py = 0 on S for t > ¢,. However, since at moment ¢t = ¢, the
self-balanced (nonzero in the general case) residual stresses occurred in the region V, the residual strains &y
and displacements @, will change ¢ > t, owing to relaxation of these stresses. Let us estimate their level by
choosing the quantity ||@(¢)|| (t > t.) as a measure of the level.

The arguments which were used to derive (2.10) lead to the inequality

lall” < L2(nk)- (5.1)

Bearing in mind that
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_/Ukmkldv /aklmnamn(bklijnij)dv < 20 (o) (k)
v
2.

and taking into account (
(5.1), this gives

7) where the symbol A is omitted, we obtain [2(n) < A;I li(ok1). Together with

lall” < AT i (ow). (5.2)
Since of; = 0, i.e., o = py at t > ¢, from (2.1), (2.3), and (2.6) we find that

. d
0= /(akzmn/’mnpkl + nriprt) AV 2 E[I%(Pkl)] + 2\ (pri)
e

from which [/;(pg;) exp (At)] < 0.
Integrating this inequality over time from ¢, to the instant ¢, we obtain

L(on) = hi(pr) < Ii(pris) exp [A(ts = t)]. (5.3)

Substituting (5.3) into (5.2) and integrating over ¢, we find that ||Q(¢)]| < [|G.]|+v71(kis ) (1 —exp[A(t.—
t)]) < ||a«|l + 771 (pkis) which yields the desired estimate.

The inequalities that we derived here and in Sec. 4 allow us to select a deformation regime in which
the body will have the desired residual displacements on S at moment t = ¢, with a level of residual stresses
and a further level of residual displacements for ¢ > ¢, which do not exceed the given values.

In conclusion, we note that many of the results obtained can be extended to more general media of
the form of (1.1) for which the velocities of viscous (creep strains) depend not only on stresses, as in (1.4).
but also on a set of structural parameters whose rates of change are described by kinetic equations (2, 3]. In
this case, the basic inequalities (1.5) and (1.6) should be replaced by

t

t
/ATIHAUH dt 2 A1) /aum,gAauAam,. dt, A(t) >0,
0 0

i t
/Anszdkz dt > M(t)/bkzmnAﬂHAnmn dt, M(t)>0
0 0

subject to the corresponding initial conditions at moment ¢ = 0 [4].
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