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I N V E R S E  P R O B L E M S  O F  D E F O R M A T I O N  

O F  N O N L I N E A R  V I S C O E L A S T I C  B O D I E S  

I. Yu. Tsvelodub UDC 539.37 

We consider two classes of inverse problems of finding, in a given t ime interval [0, t.], external force 
and kinematic actions which ensure, for t = t , ,  the required residual displacements of the surface points of 
a physically nonlinear viscoelastic body under zero external loads at this moment .  The  correctness of the 
corresponding formulations is shown, iteration methods of solution are substantiated,  and the convergence 
rate of successive approximations to an exact solution is estimated. In addition, the level of residual stresses 
in a body at moment  t = t .  and the change in the level of residual displacements of the body for t > t, in 
the absence of external forces owing to residual-stress relaxation are estimated. 

1. F o r m u l a t i o n  of  I n v e r s e  P r o b l e m s .  Let a uniformly heated body occupy the region V with the 
boundary S subject to the necessary smoothness condition [1]. Equations which determine the process of its 
deformation are of the form 

~kl = aklmn~rrnn + Ckl, (1.1) 

where r eCkl, and akl are the components  of the full- and viscous-strain and stress tensors, respectively; 
aklmn are the elastic-compliance tensor components possessing the known properties of symmetry  and positive 
definiteness [1], i.e., 

aklmnaklamn >1 aaklgkl ,  a > 0. (1.2) 

Here and below, the usual rule of summat ion  over repeat subscripts is adopted; k, 1 = 1, 2, and 3. The  strains 
ekl are small and are expressed via the components  of the displacement vector uk by the following Cauchy 

re la t ions :  

ekt = (1/2)(uk,! + Ul,k) (1.3) 

( the subscript after the  comma  refers to the derivative with respect to the corresponding coordinate).  
The components  of the viscous-strain rates ~1 -- YkI are continuous stress functions: 

71kl = 71kl(~rmn). (1.4) 

Relations (1.1) and (1.4) describe fairly satisfactorily the isothermal process of creep of 
nonstrengthening materials which have no first stage of creep. Among them, there are, for example, metallic 
materials at low levels of stress (i.e., in fairly prolonged deformation processes) and in short- t ime creep under 
conditions of high tempera ture  and high levels of stress [2]. 

We assume that  the functions (1.4) are subject to the following condition which generalizes the stability 
postulate [3]: 

mT]klmO'kl >>- )~aklmnZ~O'kl/kffrnn, )~ = const, A > 0 
(1.5) 

[Acrkl = o "(1) - o "0), 

One can easily see that ,  by virtue of (1.2) and (1.5), relations (1.4) are reversible, i.e., the stresses 
o'kl = o'kt('Tm,,) are uniquely determined by the known velocity components '7}l. [Indeed, for A~kt = 0, from 
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(1.2) and (1.5) it follows that  AcrktAakt <~ O. This is possible only for Aakt  = 0.] These functions arc ~ s u m e d  
to be subject to tile following condition, which is similar to (1.5): 

A q k t A a k t  >1 AlbktmnArlktAqmn, Al = coast, A1 > 0. (1.6) 

Here bklm n a r e  the components  of the elastic-modulus tensor which is inverse to aklmn , SO that  

aktmnbktij = ~im6in, (1.7) 

where 6kt are the unit- tensor components.  
Note that  dependences (1.4) can be generalized by introducing the t ime t into the right-hand side: 

qkt = 71kt(~rm,~, t). This corresponds to the so-called aging theories [2], which, despite the known shortcomings, 
describe well the creep process under  constant or slowly varying stresses. In this case, in formulas (1.5) and 
(1.6), there should be ~ = ,~(t) > 0 and ~1 = At(t) > 0, respectively. Moreover, in the interval [0, t,], we shall 
assume hereinafter that  these functions are constant, and, to this end, it suffices to set ,~ = min ~(t) and O<~t<~t. 
)q = min )q(t). O<~t<~t. 

For the most general dependences of the form of (1.4), the necessary and sufficient conditions for 
satisfaction of inequalities (1.5) and (1.6) in isotropic media can be obtained using the results of [3, Chapter  
3] and taking into account the fact that  (1.5) and (1.6) are equivalent, respectively, to the conditions that  the 
quadratic forms are not negative: 

Orlkl Aaktrnn),kt~mn ' ( O~ bklmn)~kl,mn" 
O-g-~.. ~, O,Tm. a ~ 

As an illustration, for anisotropic media, we give the following potential  dependences: r/k t = O~/O~rkt = 
~lOs/Oat,, ~ = ~(s) ,  r/(s) = # ' ( s ) ,  and s 2 = akt,n,:ktum,,  for which (1.5) and (1.6) hold if [4] A ~< (O/s, 77') ~< 

,~i -1. 
The known functions r t = B[exp ()~s[B) - 1 l, rt = Bsinh ()~s/B), and rt = Bs / (B[ )~  - s) satisfy, for 

example, the lat ter  inequalities (B = coast) if one sets ) q - r =  r/~(s.), where s .  is the largest possible value of 
s, for example, s .  = o" r (or is the yield point,  because plastic strains are absent), i.e., s < uy. 

The inverse problem of deforming a body in a natural  state for t < 0 into a given residual state can 
be formulated as follows: which external actions should be exerted on the surface S (in the absence of mass 
forces) within the interval [0, t,] in order that  at the moment  t = t,  the external forces are absent and the 
residual displacements fit of the surface points S take on the given values of fik, ? 

We shall separate concrete classes of external force and kinematic actions when the loads or the 
displacements over the surface S vary, in the interval [0, to], by a given-in-time law but  with the unknown 
values for t = to. With in  the  interval [to, t,], the external forces are then lifted, i.e., a slow unloading occurs, 
so that ,  for t = t , ,  the residual displacements axe fit = fit ,  on the surface S. Hence, we shall consider the 
following problems. 

P r o b l e m  1. Find the  quant i t ies  Pko such that  under  external  loads Pk = f(t)pk0 applied to the surface 
S, where f ( t )  is a given nonnegat ive  funct ion if(0) = 0, j/f0) > O, f ( t )  >1 0 (0 < t <~ to), f ( to )  = 1, f ( t )  <~ 0 
(to < t < t , ) ,  and f ( t , )  = 0], the  fol lowing condition is satisfied: for t = t , ,  the residual displacements  are 
fzk = ftk, on S.  

P r o b l e m  2. Find the quant i t ies  uko such that upon displacements  uk = ~(t)uko (0 <~ t <~ to) on S and 
under subsequent  unloading when the external  loads are Pk = f ( t )pko (to <~ t <<. t , ) ,  the following condition 
is satisfied: the residual stresses fik = f k ,  on S l'or t = t , .  Here ~o(t) and f ( t )  are given funct ions [qo(0) = 0, 
~(to) = f ( to)  ,= 1, ] ( t )  <<. 0 (to < t < t , ) ,  and f ( t , )  = 0]. 

In both problems, we assume that,  for t < 0, the body was in a nondeformed state, and, hence, 
according to (1.1) and (1.4), for viscous strains ~ t ,  everywhere in V we have 

~,t  t=0 = 0. (1.8)  

The above problems are considered within the framework of a conventional quasi-static formulation, 
which is generally adopted in the creep theory for metallic materials [2-4] when dynamic terms are not 
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incorporated in equilibrium equations. In this case, the mass forces are assumed to be absent and, hence, the 
aforementioned equations have the form [41 

crkl,t = 0. (1.9) 

Thus, the system of equations for both problems includes the constitutive equations (1.1) and (1..I). 
the Cauchy equations (1.3), and the equilibrium equation (1.9). The initial conditions are of the form of 
(1.8), and the desired boundary conditions are present in the formulations of Problems l and 2. Note that for 
to = t. ,  the latter coincide with problems 1 and 2 from [4] and correspond to the case of instantaneous elasti~ 
unloading at moment t = t,. 

2. A u x i l i a r y  A s s u m p t i o n s .  We denote the current residual displacements by fik which would remaill 
in the region V at moment t considered after instantaneous removal of the current external loads pk on S 
and also after elastic unloading. According to (1.3), to these displacements correspond the residual strain.~ 
gkt; moreover, 

gkl = aklmnPrnn + ~Ckl, (2.1) 

where Pkl are the residual stresses which appear in the body at moment t after unloading. Here [3, 4] 

o'kt = ~ + Pkl. (2.2) 

In the above relation, o'~t are the components of the stresses corresponding to the solution of a purely elastic 
problem with the same loads Pk on S at the same moment t, so that to the stresses Pkt correspond to zero 
loads on S. 

We shall introduce the notation for the quantities which are often used in our consideration: 

tl X 1/2 / tl \1/2 

, , iv, , ):  , l , : f 
V V V 

t $ t t 
/" f 2 X 1/2 ( /  )1/2 ( f  )1/2 / 

~,(t) = (,]~(:,,~,,t)dt) , ~ ( t ) =  ~ha,,~,,)at = I l a u ' l l ~ , ,  , g( t )= f~dt, 
0 0 0 0 

t t 

g~(t)= f yd,, ~(t)=exp(-:~t) f l,~lexp(:~t) dt, 
0 0 

---- /~--1~II, r ---- ,~[ffl(tO) -- (~* -- tO)I/2['y2.q(t*) -- g(~0)]1[2], 

~o = Z(to) ,  

C3 = 1 -- ~0 -- [(t, -- tO)(e 4 -- )~2a5)]1[2 , 
tO t.  

0 t o 

to 

c 7 =  /3dt ,  c s -  2A ' ( - t 0 )  (3 ' 5 - 1 ) c s  , 
0 

c10 = A ( - / -  1)(cs + c6){1 - / ~ 0  - A(t ,  - t0)1/2[( -?  - 1)~s + -r%61~/2} -2  

Let bit be the stress field and g~l = ak/mna~l be the field of strains corresponding to the solution of 
the elastic problem under displacements uk given on S. As is known [1], the quantity llull = II(5~t) = I2(g~t) 
can serve as a norm for the displacement field if one excludes from the latter the displacement of a body as a 
rigid whole. In other words, the quantity Ilull is the norm for the field w = u - YIu, where YI is the operator 
of the orthogonal projection [relative to the scalar product in (L2(V)) 3] onto a set of rigid displacements. In 
what follows, by u we mean a set of displacements with subtraction of body displacement as a rigid whole, 
i.e., the field w. If the point is, therefore, the uniqueness of solution of the corresponding problem in terms 
of displacements (Problem 2), by this we assume the uniqueness of determination of the field w. The norm 
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indicated above is produced by the following scalar product: 

1 
(Ul, u 2 ) =  / "~akirnnO'~ll)(r~: ) dV -- f 1L :e(1)~(2),41/ 

" 9 ~  kl  " r a n  ~ " 

v v 
Note that to the stresses aft from (2.2) correspond the elastic displacements u~ (solution of the elastic 

problem under external loads Pk specified on S), so that Ilur = 1~(~h) = 12(~h),  where e~t = a~tmna~,~. 
Let the components of the displacement vector uk E HI/2(S) be given on S (the spaces used hereinafter 

are defined in [1]). A solution of the corresponding elastic problem then exists in the region V. Note that 
uk E Ht(V).  In this case, we obtain the following distribution of external loads on S: Pk E H-t/2(S). [And 
vice versa, if Pk E H-I/2(S) are specified on S, there exists the solution uk E Hi(V) of the elastic problem.] 
We can set the norm Ilull = II(~t)  = 12(gTa) into correspondence to each displacement vector u on S. As 
is known from [1], under the adopted assumption that rigid displacement are absent the norm IlulIH~r is 
equivalent to [lull- Duvaut and Lions [1] established the inequality Ilull/> AIIwlIH~(V), where A > 0; 

2 
w HI(V ) = /(WkWk + tOk,tWk,t) dV. 

v 
Owing to the positive definiteness of the matrix corresponding to the elastic-modulus tensor bklmn , one can 
readily show that the inverse inequality Ilull <~ m~llwllH~(V), A1 > 0 also holds. In this connection, the 

quantities uk E H1/2(S) can be treated as the elements of the Hilbert space U with the norm Ilull. Similarly, 
the norm for the vector of external loads p on S is introduced: llpll = ta(a~a)  = I~(e~t)  = Ilu'll, i .e.,  the 
quantities p~ E H-1/2(S) can be regarded as the elements of the Hilbert space P with the above norm. Note 
that similar norms were used by Kuz'menko [5]. 

In our further consideration, we shall employ the equation of virtual work which, in the absence of 
mass forces, has the form [3] 

f ~k,,k, dV= f pkukdS, (2.3) 
v S 

where the field akt satisfies the equilibrium equations (1.9), Pk = aklnl (nk are the components of the unit 
vector of the normal which is external to S), and the fields ekt and uk satisfy relations (1.3); here the quantities 
ak! and ekl are not related to each other. 

By virtue of (2.3), we have 

1/u(I)~'(2) dS = 1 /  (ux,u ) = ' d s .  
s s 

Here p(i) E H-112(S) are the external loads corresponding to the solution of the elastic problem in terms 

of displacements u (i) e H1/2(S), i.e., ~i) _e(i) = akt nt on S (i = 1 and 2). On the other hand, for arbitrary 

p(') e H-1/2(S) and u (2) e H'/2(S), we have 

1 /'u(2) (1) 
j k pk d s  = ( ~ ,  u~), 
s 

where u] is the vector of elastic displacements over S, which corresponds to the vector of external loads Pl- 
To denote the increments of the corresponding quantities, we use the symbol A, as in Sec. 1. Note 

that, from (2.2) and (2.3), it follows that  

zr~(~x,~kt) -- t~(,',~) + t~(expk,) ---II~u~ll 2 + I~(Apkt) >1 II~Xu~ll 2, (2.4) 

since [3] 

akt,nnAa,n, Apkt dV = 0. (2.5) 
v 
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Ity virtue of (t.5), (1.6), and (2.4), we write 

13 /> 2Al~(Acrkt) >/ 2AIIAu*II2; 
I3 >/2,h I~(A,?k~). 

We then obtain est imates for 14(t) through II~Xu'll. From (2.1) and (2.3), it follows that  

f AukAp kdS = f A~klA~ = f A~tAcr~tdV" 

(2.6~ 

(2.7/ 

s v v 

With allowance for (2.1), (2.2), and (2.5), the last equality takes the form 

/aklmn/k/)mnApkl dV + I3 = [/k~?klAcr~! dV. 
v v 

Integrating over t ime from zero to the instant t and taking into account that  Apk t = 0 for t = 0 everywhere 
in V, from the above inequality we find that  

t t t 

f 13 dt= f f  ArlktA~r~tdVdt- I2(Apkt(t)) <<.//aktm,~Acr~n(bktijArlii)dVdt 
0 OV OV 

t t 
2( f I2(AO'~l) dt)l/2 ( f [2(bklrnnAr]rnn)dt) 1]2 -~ 2 / 5 ( t ) / 4 ( t ) ,  ( 2 . ' )  

0 0 

where equalities (1.7) and the known inequality 

OV 0 0 
were used for zkt = Ao'il and Ykt = bkimnArlrnn" 

On the other hand,  from (2.6) and (2.7) we have 

t t 

f Z3dt >~ 2~Zg(t), f Z3dt ~ 2,~xZ~(t), 
0 0 

from which, with allowance for (2.8), we obtain 
Ms(t) ~< 14(t) ~< ATlls(t) .  (2.9) 

In addition, in our further  considerations we shall need to estimate the increments of the residual 
displacements over S, i.e., the quant i ty  IIAfill through IIAu*ll. We shall use A&~Z and A/hk = A~tn t to denote 
the elastic stresses and the related external loads which correspond to the displacements A i k  over S. Similarly 
to (2.8), with allowance for (2.1) and (2.3) we then write 

d ~ ~~ 
(ll~all 2) = f ak,,,,,,A~m,,/""ktdW = ] a~'k/"~k dS d-~ 

v s 

_ / (aklmnA~mn .-{- Ar]kl)AO'ZldY = / ArlklA~ ~ 2[2(/"rtkt)llAfill, 
v v 

from which follows the inequality II~xfill -< [2(~x0kt). Integrating this inequality over t ime from zero to t and 
taking into account that  IIA611 = 0 for t = 0, we find 

t 

IIA,all <, J I2(A•kt)dt <<. v~I4(t)  ~< Al lv / t l s ( t ) ,  (2.10) 
0 

where the Cauchy-Bunyakovskii  inequality and (2.9) were used. 
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3. C o r r e c t n e s s  of  I n v e r s e  P r o b l e m s .  The study of the correctness of Problems 1 and 2 will be bm~cd 
on inequalities (2.6), (2.7), (2.9), and (2.10) and also on the lower estimate for the quantities (Aft , ,  Au~) and 
(Aft, ,  Au0), respectively (the subscripts asterisk and zero refer to the moments of t ime t = t, and t = t0). 

L e m m a  1. Let there be two sets of loads p~i) = f(t)p~i0 ) (i = 1 and 2) which act on S, where th,. 
function f ( t )  is subject to the conditions indicated in the statement of Problem 1. The inequality 

(Af i , ,Au~)  >/clllAu~l[ 2 (3.1) 

then holds for the differences of the corresponding quantities. 
P r o o f .  Owing to (2.1)-(2.3), with allowance for the equalities Afik]t= ~ = 0 we have 

t .  f/ t/f AukAPk dsdt + f f  AukApk~ =16 +17' 2(Aft, ,  Au~) = AukApko dSdt = f 
o s o s toS (3.2) 

tO t .  t .  

[I12(Apkl)]'+ [3(t) dr, I7=ff (aktm.Abm= + A'Tkt)A~,odVdt=f fA~k,AahodVdt. 16 = f  f 
0 toV toV 

Let us estimate the quantit ies I6 and 17 from (3.2). For 16, after integration by parts of the first term under 
the integral with allowance for the equalities 

f(to) = 1, lim I?(Apkt(t))= lim [I~(Apkt(t))]'= 0 
t--.o f(t) t--o ](t) 

[since ] (0 )  > 0 and Apki[,=o = 0], w e  obtain 

to 

I21(ApklO) + f [(//fz)z?(~pkz(t)) + Is(t)/ f]  dt >t 2Agl(t0)llAu~ll 2. (3.3) 16 
0 

Here the inequality holds true, because ] :> 0 (0 < t ~ to) and aaso by virtue of (2.6), where IIAu'II = fllAuSII. 
Similarly to (2.8), f o r /7 ,  recalling (2.9) we write 

Ihl <<- 2(  f I~(A~kt)dt) x/2 / J '[Au0'll2dt) x/2 
to gO 

= 2(t , - to) t /2 i lAu~l l[I~( t ,  ) - I~(to)] x/2 <~ 2(t , - to)X/2llAu~ll2[A'f2g(t ,  ) - )~2g(to)]l/2. (3.4) 

From (3.2)-(3.4), it follows (3.1). 
T h e o r e m  1. Let fi, E U and the function f = f ( t )  be such that the constant cl from (3.1) is positive. 

Then there exists a unique solution p0 E P of Problem 1, the operator p0 = p0(fi ,)  being continuous. 
P r o o f .  By virtue of Lemma  1, we have callAuSII 2 ~< (Aa. ,AuS)  ~< IIAC,,II IIAuSll from which follows 

IIAuSII <~ ciXllAa.ll, thus ensuring the uniqueness and continuity of the solution. 
The proof of its existence is similar to that  by the author  [4] for Problem 1 and is as follows. Let us 

consider the sequence {uen0} where 

un+l = ue 0n _ e(fi,~ - fi,) on S (n = 0, 1, 2, . . . ) ,  e =cons t ;  (3.5) 

0 is an arbitrary element from U. From (2.10), we obtain that  Ilfi~ ~< c211u~ i.e., rio, E U. Clearly, for U e 0  

any n, the elements of the sequence (3.5) belongs to the space U. 
From (3.5), we find that  U~o +1 - ue n+t = u ~  - ueno - e(fi, m - fi,~) from which, with allowance for (2.10) 

and (3.1), we have 

----- n - 2 r n  __ U n 12 Ilu~ +x - u,"0+Xll 2 I lu~ - u,"0112 - 2 ~ ( u ~  - u ~ 0 , u ?  - ~.") + ~211~7 - ~.~112 ~< ~ l l u , 0  ~o , 

~ = 1 - 2~cl + ~2c~. 
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9 -2 It is evident that  for 61 < 1, i.e., for 0 < c < -cic. 2 , the sequence (3.5) is fundamenta l .  The maximur,, 
convergence rate corresponds to the value c = c~c2 2 when 62 = 1 - c~c2 2. Since the space U is full, there 

{2 exists lira ue0 = ue0 E U. Here, according to (3.5), , l i m  6,  ~ = fi,. As noted in Sec. 2, the element ue0 E U 
rt ~ e ' 9 0  

determines uniquely the e lement  p0 E P.  
The  iterative process (3.5) can serve as a basis for construction of approximate  solutions of the problem 

n n-I  1), it is easy to show [4] that  the convergence rate in question. Since Hu~ +1 - Uenol{ ~< 61[{Ueo -- UeO {} (6t < 
of successive approximations to an exact  solution is de termined  by the inequali ty llano- u~oll <~ ~?(~ - 

- - 1  1 ,h) llu,o -u~ 
The above proof tha t  Prob lem 1 is correct is essentially based on the condit ion cl > 0 which imposes 

definite restrictions on the funct ion f = f ( t ) .  To clarify these restrictions, with allowance for relation (3.1) 
one can write the inequali ty Cl > 0 as follows: 

g~(to) > (t,  - to)[72g(t,) - g(t0)], 3' = A-'A11 /> 1 (3.6) 

[the inequality 3' ~> 1 follows from (2.9); evidently, the case 7 = 1 corresponds to the linear dependences  (1.4) 
when r/k t = Aaktm,~am,, and, hence,  akl = Albkb~n'7,,~n, where A1 = A-l;  here the equal i ty  sign holds in (1.5) 

and (1.6)1. 
Since, owing to the  Cauchy-Bunyakovski i  inequality, g2(to) <<. tog(to), we have the following necessary 

condition for satisfaction of (3.6): go~g, > 72(1 - to~t,). This is possible only for 

to~t, > 1 - 7  -2 , (3.7) 

so that  go <~ g,- Inequali ty (3.7) establishes the lower bound for the moment  when unloading begins. 
We shall give an example  of the  function f = f ( t )  for which the basic condit ion (3.6) is satisfied. Let 

( t / to)  a' (0 <~ t ~< to, 0 < a l  ~< 1), 

f ( t )  = [(t, - t ) / ( t ,  - to)] ~2 (to < t ~< t,, a2 > 0). 

Condit ion (3.6) is then  equivalent  to the  inequali ty to / t ,  > (1 + ( ) -1 ,  where  

~ =  ze(~X + ae-z(a l  + 1) -2 - 1 )  [ze ( 7 2 -  1)(2a2 + 
= + j 

Naturally, this increases the  lower bound  for to as compared  with (3.7), because (1 + ~)-1 > 1 - 7 -2. 
We shall consider P rob lem 2. 
L e m m a  2. Let two sets of  external actions be given on S : 

us i )=~o( t )u( i )  o (O <~ t <<. to), p~i) = f(t)p(i) ~ ( t0~<t~<t , )  ( i = 1 , 2 ) ,  

where the functions qo(t) and  f ( t )  are subject to the conditions formulated in Problem 2. The est imate 

(A~ , ,  ~uo)  >/~3llZxuoll 2 (3.8) 

is then true. 
P r o o f .  Since u = fi + u e, 

t* 

(Aa , ,  ~u0)  = (~u0 - Au~, ~u0)  + J ( a u ,  Au0) dt. (3.9) 

to 

Let us es t imate  both te rms on the  r ight-hand side of equal i ty  (3.9). At any momen t  t (0 ~< t <~ to), owing to 
(1.1) and (I.7) and also to the  equali ty 

' /  aklm,~A&mnA~kt dV = ]l(A~kl)Ii(ACrkl) 

V 
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We }lave 

l,(A~r~t)l,(A~r~t) + ~13(t) 
1/ 

= ~ A ~ t A a ~ t d V  

V 

Hence, taking into account (2.6) and the equality I2(Affkt) = IIAull = I~111Au011, we obtain i,(/X~k~) + 
~II(A~rkl) <~ I~111Auoll or d/dt[ll( Acr~t)e• At)] <<. IIAu01l I~lexp(At). 

Integrating this inequality over t ime from zero to the instant t and taking into consideration that 
A~rkt t=0 = 0, we find that  It(A~rkt ) ~< 8(t)HAu01l. From (2.4), it then follows that  

[[~u~(t){[ ~ 8(t){[~uol[ (0 ~< t ~< to). (3.10) 

In particular, {lAud{{ .< 8o}lAu0}l, therefore ( A u 0 -  Au~,Au0)  ~> {IAuoH 2 - IlAu~{I IIAu0{{ /> ( I -  
80)l{Au0{I ~. 

Similarly to the quant i ty  I7 from (3.2), for the integral in (3.9), with allowance for (3.10) we write 

i/ 
to tO to 

llAuoll(t.- to)m  2z (to)] xn llAuoll (t.- to)'/2(c4- 
since llAu~ = .f(t)llA,~all (to ~ t ~< t,) .  From these inequalities a,,d (3.9) follows (3.8). 

T h e o r e m  2. Let fi, E U and the [unctions ~o = ~o(t) and f = f ( t )  be such that the constant c3 [rom 
(3.8) is positive. Then there ex/sts a unique solution u0 E U o[ Problem 2, the operator uo = u0(fi,) being 
continuous. 

P r o o f .  The  uniqueness and continuity of the solution are ensured by an inequality which follows from 
Lemma 2: Ilau0ll -< c~ll~6,l{. To prove its existence, note that ,  from (2.10) and (3.10), it is not difficult to 
obtain 

{[Aft.[[ ,< c4~ff, ll~u011. (3.11) 

Let us consider the sequence {u~ }, which is similar to (3.5): 

u~ +1 = u~ - ~(fi.~ - fi.) on 5' (n = 0, 1, 2 , . . . ) ,  e = const (3.12) 

(u~ is an arbitrary element f rom U).  With  allowance for (3.8) and (3.11), we therefore have 

Ilu~ "+' - u ~ + ' l l  .< 6~llu~' - u~ l l ,  ~ = t - 2~c~ + ~ 2 ~ t , .  

Hence, for 0 < e < 2c3/(c4t,),  the sequence (3.12) is fundamental  and, owing to the fullness of the 
space U, converges to the element u0 ~ U; here n--,oolim u,-n = fi,. 

The iterative process (3.12) can be used to find approximate solutions of the problem considered; here 

Ilu~ - u011 <- 6~'(t - ~ 2 ) - l l l u 0  ~ - u~ (62 < 1). 
Let us consider l imitations which are imposed on the functions ~ = ~v(t) and f = f ( t )  by the condition 

c3 > 0. From this condition, it follows that  80 < 1, which is the case, for example, if ~ ( t ) />  0. Indeed, in this 
c a s e  

to to 

= exp ( - A t 0 ) j  ~exp(At)dt  = I - Aexp ( - ~ t 0 ) j ~ e x p ( A t ) d t  < 1, 80 
0 0 

because ~,(0) = 0, ~(t0) = 1, and 0 < ~(t) < 1 (0 < t < to). Therefore, it follows, in particular, that  the 
minimum value of 80 corresponds to a relaxation regime of deformation in the interval [0, to] when ~2(0) = 0, 
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r (0<t<t~) ,  
this case 

~(t) = 1 (tl ~< t ~< to) for tl ~ 0. It is easy to see that f l 0 m i n  = exp(-Mo)~ i.e., in 

while, for any other regime, 

to 

/ 
0 

With allowance for (3.8), the 

/ :  
to 

Assuming hereinafter that ~ 

to 

f I~b] exp (At) dt 
0 

= l ,  

to to 

[~]exp(At)dt >! f I~ldt >- ff ~dt = l. 
0 o 

inequality ca > 0 can be represented as 

dt < 7-2flo2[ ( l ( ~  flO)2 - to) (3'2 _ 1)cs]. (3.13) 

>/ 0, we obtain the lower and upper estimates for the constant c5 from 
9 - 1  (3.13). Owing to the Cauchy-Bunyakovskii inequality, we have c5 >1 cqt o and 

to t t 

c7 =/exp ( - A t ) ( f  qbexp (At )d t )d t  = - A  - 1  [exp ( - A t ) f ~ e x p  ( A t ) d t -  ~o(t)] : =  A-l(1 - rio). 
0 0 0 

Here the procedure of integration by parts was used. Using this procedure, we also can show that 

cS ( r  ~ ) 2  ~ t /  (1 -- f10)2 ZA 
= - - "  + ~ofldt~< =r  + c r = c 8 .  

(1 -- flO)2/(A2to) ~ c5 ~ c8. 
Thus, we have 

(3.14) 

From the first inequality in (3.14), we obtain a condition which is necessary to satisfy (3.13): (t, - 
to) -1 - (3 '2 - 1)to 1 > 0. This condition is equiwlent  to inequality (3.7) and yields the same lower bound for 
the moment to of onset of unloading as in Problem 1. 

The sufficient condition for satisfaction of (3.13) follows from the second inequality in (3.14): 

t .  

f f2 < c9. (3.15) dt 
to 

Inequality (3.15) is possible if c9 > 0, i.e., for 2(1 - f10)/[(3' 2 - 1)(1 + fl0)] > A(t, - to). 
With the function qo = ~(t) specified in the active-loading interval, i.e., for 0 ~< t ~ to, the conditions 

(3.13) and (3.15) can be regarded as restrictions on the function f = f( t )  under unloading (to ~< t ~< t,). 
Hence, if f ( t )  = [(t, - t ) / ( t ,  - to)] ~ (to ~< t ~< t,) ,  inequality (3.15) is satisfied for ~ > [c~'l(t, - to) - 1]/2. 

4. E s t i m a t e s  of  t h e  Leve l  of  R e s i d u a l  S t r e s ses  for t = t , .  The inequalities which were used in 
proving Theorems 1 and 2 allow one to obtain, for each problem considered, the upper estimates for the level 
of residual stresses in the body at moment t = t,  after unloading. As a measure that characterizes this level, 
we choose the quantity 

t .  
1 t?(pkt,) + A f q(pkt(t))dt I8 = 

0 

It should be noted that the formulas that we derived above for the differences of the quantities that 
characterize two states are also valid for the quantities of the basic state, because this state can be chosen as 
the first state, while the natural state corresponding to zeroth displacements, strains, and stresses throughout 
the region V can be used as the second state. 
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We introduce the following notation: 
t. t. 1/2 

1, = / Ilu"ll'>dt, ',o = ( / '7 ( ,7k, )  dr) 
0 0 

Then, from (2.3), with allowance for (2.4), (2.6), and (2.9), similarly to (3.2) we obtain 

t .  t .  

�9 " 
I8+AI9  ~<f( f t ,  u e)dt = 7 

0 OV 

from which 
18 ~< (Ai -t - A)/9. (,l.1) 

Since Iluell = fllu~N and ilu~N ~< c~-l[lfi, N in Problem 1, from (4.1) it follows that 

/s < (A~ -1 - A)ci-2g,[lS, II 2. (4.2) 

Because f ( t )  >. 0 (0 <. t <. t,), one can see from (3.1) that Cl ~< Agl(t,), the equality sign occurring 
only for to = t,. In view of this, from (4.2) it follows that the minimum estimate for I8 is obtained in the case 
where the functional 

t .  t .  

0 0 

reaches a minimum value in the set of functions f = f ( t )  subject to the conditions formulated in Problem 1. 
Since g~(t,) <~ t,g(t,) ,  the equality sign being possible only for f ( t )  = const on [0, t,], this minimum is equal 
to A-2t~ -1 and corresponds to a stress at which the function f = f ( t )  [0, tl] (tl ~ 0) increases monotonically 
(instantaneously) from 0 to 1, then f ( t )  = 1 for tl < t < to, and decreases monotonically from 1 to 0 in the 
interval [to, t,] (to -+ t , )  (i.e., an instantaneous unloading occurs at t = t,).  In this case, from (4.2) we obtain 

Is ~< (7 - 1),t-xt:ll l ,~,ll  2. 
In Problem 2, we have Ilu'(t)ll ~</3(t)lluoll for 0 ~< t ~< to owing to (3.10) and Ilu~ = / ( t ) l lu~ l l  for 

to < t ~< t, and Iluoll ~< 4-111'~,11. Hence, from (4.1) we t~nd Is -<< (A?I _ ~)~14%,11a, ii ~ from which, with 
allowance for (3.8) and (3.14), we obtain a cs-independent estimate: 

/8 <~ ~lolla, II ~. (4.3) 

If the moment t = to at which unloading begins is fixed, as is seen from (4.3), to minimize the estimate 
obtained, it is necessary to set f ( t )  = 0 with to < t < t , ,  i.e., c~ = 0. This corresponds to an instantaneous 
unloading at t = to and to the period during which the surface S of the body in question is in an unloaded 
state in the interval (to, t ,) .  For c~ = 0, the function cl0 = cl0(fl0) from (4.3) is an increasing one (for c3 > 0, 
which was used in Sec. 3), therefore mincl0 = cl0(/30min). As mentioned above,/30rain = exp (-At0),  which 
corresponds to a relaxation regime of deformation in the interval [0, to]. 

If the magnitude of to is not fixed, as it is easy to see, a minimum of the estimate (4.3) is reached for 
to = t ,  and/70 = /3 ,  ~ exp ( -At , ) ,  which corresponds to the aforementioned relaxation regime for 0 <~ t < t, 
and to an instantaneous unloading for t = t, .  In this case, minclo = (1/2)(7 - 1)(1 +/3,)(1 - / 3 , )  - l .  

5. E s t i m a t i o n  o f  t h e  Leve l  of  R e s i d u a l  D i s p l a c e m e n t s  for t > t , .  We assume that after unloading 
the body surface is in an unloaded state, i.e., Pk = 0 on S for t > t,. However, since at moment t = t, the 
self-balanced (nonzero in the general case) residual stresses occurred in the region V, the residual strains gkl 
and displacements fik will change t > t, owing to relaxation of these stresses. Let us estimate their level by 
choosing the quantity llfi(t)[I (t > t ,)  as a measure of the level. 

The arguments which were used to derive (2.10) lead to the inequality 

I1,:,11 < t2(,Tkt). (5.1) 

Bearing in mind that  
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f o'ktqk t = ] aklmn~ ) <~ 2ll(o'kl)12(qkt), 
f 

dV dV 
V V 

and taking into account (2.7) where the symbol A is omit ted,  we obtain /2(r/kt) <~ At l ll(o'kt). Together with 
(5.1), this gives 

Ilall .< . ~ t l [ l ( O ' k l ) .  ( 5 . 2 )  

Since cr~t = 0, i.e., akt = Pkt at t > t,, from (2.1), (2.3), and (2.6) we find that  

d 2 0 = f(akt.,nbm.pkt + q~tPkt) dV >1 ~[I~ (Pkt)] + 2Al~(pkt) 
V 

from which [It(pkt)exp (At)]" ~< 0. 
Integrating this inequality over time from t,  to the instant t, we obtain 

II(akt) = II(pkt) <~ It(pkl,)exp [A(t, - t)]. (5.3) 

Substi tut ing (5.3)into (5.2) and integrating over t, we find that  lift(t)[1 ~ [115, II +TIl(Pkt , )(1-exp[A(t , -  
t)]) ~< Hft*l[ + 7II(pkt ,)  which yields the desired estimate. 

The inequalities that  we derived here and in Sec. 4 allow us to select a deformation regime in which 
the body will have the desired residual displacements on S at moment  t = t ,  with a level of residual stresses 
and a further level of residual displacements for t > t,  which do not exceed the given values. 

In conclusion, we note that  many of the results obtained can be extended to more general media of 
the form of (1.1) for which the velocities of viscous (creep strains) depend not only on stresses, as in (1.4), 
but also on a set of s t ructural  parameters whose rates of change are described by kinetic equations [2, 3]. In 
this case, the basic inequalities (1.5) and (1.6) should be replaced by 

t t 

>. ] > o. 
0 0 

t t 

f .> o 
0 0 

subject to the corresponding initial conditions at moment  t = 0 [4]. 
This work was suppor ted  by the Russian Foundation for Fundamental  Research (Grant Nos. 94-01- 
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